Search results for "Fisher information metric"
showing 10 items of 13 documents
Common Fixed points for multivalued generalized contractions on partial metric spaces
2013
We establish some common fixed point results for multivalued mappings satisfying generalized contractive conditions on a complete partial metric space. The presented theorems extend some known results to partial metric spaces. We motivate our results by some given examples and an application for finding the solution of a functional equation arising in dynamic programming.
Bilateral denseness of the hyperbolic limit points of groups acting on metric spaces
1997
Distortion of quasiconformal maps in terms of the quasihyperbolic metric
2013
Abstract We extend a theorem of Gehring and Osgood from 1979–relating to the distortion of the quasihyperbolic metric by a quasiconformal mapping between Euclidean domains–to the setting of metric measure spaces of Q -bounded geometry. When the underlying target space is bounded, we require that the boundary of the image has at least two points. We show that even in the manifold setting, this additional assumption is necessary.
Quasiconformal maps in metric spaces with controlled geometry
1998
This paper develops the foundations of the theory of quasiconformal maps in metric spaces that satisfy certain bounds on their mass and geometry. The principal message is that such a theory is both relevant and viable. The first main issue is the problem of definition, which we next describe. Quasiconformal maps are commonly understood as homeomorphisms that distort the shape of infinitesimal balls by a uniformly bounded amount. This requirement makes sense in every metric space. Given a homeomorphism f from a metric space X to a metric space Y , then for x∈X and r>0 set
Towards interpretable classifiers with blind signal separation
2012
Blind signal separation (BSS) is a powerful tool to open-up complex signals into component sources that are often interpretable. However, BSS methods are generally unsupervised, therefore the assignment of class membership from the elements of the mixing matrix may be sub-optimal. This paper proposes a three-stage approach using Fisher information metric to define a natural metric for the data, from which a Euclidean approximation can then be used to drive BSS. Results with synthetic data models of real-world high-dimensional data show that the classification accuracy of the method is good for challenging problems, while retaining interpretability.
Common Fixed Points in a Partially Ordered Partial Metric Space
2013
In the first part of this paper, we prove some generalized versions of the result of Matthews in (Matthews, 1994) using different types of conditions in partially ordered partial metric spaces for dominated self-mappings or in partial metric spaces for self-mappings. In the second part, using our results, we deduce a characterization of partial metric 0-completeness in terms of fixed point theory. This result extends the Subrahmanyam characterization of metric completeness.
Graphical metric space: a generalized setting in fixed point theory
2016
Building on recent ideas of Jachymski, we work on the notion of graphical metric space and prove an analogous result for the contraction mapping principle. In particular, the triangular inequality is replaced by a weaker one, which is satisfied by only those points which are situated on some path included in the graphical structure associated with the space. Some consequences, examples and an application to integral equations are presented to confirm the significance and unifying power of obtained generalizations.
Common fixed points of g-quasicontractions and related mappings in 0-complete partial metric spaces
2012
Abstract Common fixed point results are obtained in 0-complete partial metric spaces under various contractive conditions, including g-quasicontractions and mappings with a contractive iterate. In this way, several results obtained recently are generalized. Examples are provided when these results can be applied and neither corresponding metric results nor the results with the standard completeness assumption of the underlying partial metric space can. MSC:47H10, 54H25.
Scalable implementation of measuring distances in a Riemannian manifold based on the Fisher Information metric
2019
This paper focuses on the scalability of the Fisher Information manifold by applying techniques of distributed computing. The main objective is to investigate methodologies to improve two bottlenecks associated with the measurement of distances in a Riemannian manifold formed by the Fisher Information metric. The first bottleneck is the quadratic increase in the number of pairwise distances. The second is the computation of global distances, approximated through a fully connected network of the observed pairwise distances, where the challenge is the computation of the all sources shortest path (ASSP). The scalable implementation for the pairwise distances is performed in Spark. The scalable…
Some Common Coupled Fixed Point Results for Generalized Contraction in Complex-Valued Metric Spaces
2013
We introduce and study the notion of common coupled fixed points for a pair of mappings in complex valued metric space and demonstrate the existence and uniqueness of the common coupled fixed points in a complete complex-valued metric space in view of diverse contractive conditions. In addition, our investigations are well supported by nontrivial examples.